LEUNIG and SEUSS co-repressors regulate miR172 expression in Arabidopsis flowers.

نویسندگان

  • Boyana Grigorova
  • Chloe Mara
  • Courtney Hollender
  • Paja Sijacic
  • Xuemei Chen
  • Zhongchi Liu
چکیده

Central to the ABCE model of flower development is the antagonistic interaction between class A and class C genes. The molecular mechanisms underlying the A-C antagonism are not completely understood. In Arabidopsis thaliana, miR172 is expressed in the inner floral whorls where it downregulates the class A gene APETALA 2 (AP2). However, what controls this predominantly inner whorl-specific expression of miR172 is not known. We show that the LEUNIG (LUG) and SEUSS (SEU) co-repressors repress miR172 expression in the outer whorls of A. thaliana flowers. The recruitment of LUG/SEU to the miR172 promoters is dependent on AP2, suggesting that AP2 represses the expression of its cognate microRNA. Our study provides new insights into the molecular mechanisms underlying the A-C antagonism and shed light on the transcriptional regulation of miR172 during flower development.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Leunig Homolog , and Seuss Are Transcriptional Co - Repressors That Regulate Flower Development , Mucilage

Title of Dissertation: LEUNIG, LEUNIG HOMOLOG, AND SEUSS ARE TRANSCRIPTIONAL CO-REPRESSORS THAT REGULATE FLOWER DEVELOPMENT, MUCILAGE SECRETION, AND PATHOGEN RESISTANCE Minh Bui, Doctor of Philosophy, 2009 Directed By: Associate Professor William J. Higgins, Department of Biology Transcriptional repression is an important regulatory mechanism for development. My thesis focuses on dissecting the...

متن کامل

SEUSS and SEUSS-LIKE transcriptional adaptors regulate floral and embryonic development in Arabidopsis.

Multimeric protein complexes are required during development to regulate transcription and orchestrate cellular proliferation and differentiation. The Arabidopsis (Arabidopsis thaliana) SEUSS (SEU) gene encodes a transcriptional adaptor that shares sequence similarity with metazoan Lim domain-binding transcriptional adaptors. In Arabidopsis, SEU forms a physical complex with the LEUNIG transcri...

متن کامل

APETALA1 and SEPALLATA3 interact with SEUSS to mediate transcription repression during flower development.

The transcriptional repression of key regulatory genes is crucial for plant and animal development. Previously, we identified and isolated two Arabidopsis transcription co-repressors LEUNIG (LUG) and SEUSS (SEU) that function together in a putative co-repressor complex to prevent ectopic AGAMOUS (AG) transcription in flowers. Because neither LUG nor SEU possesses a recognizable DNA-binding moti...

متن کامل

Transcriptional repression of target genes by LEUNIG and SEUSS, two interacting regulatory proteins for Arabidopsis flower development.

Transcription repression plays important roles in preventing crucial regulatory proteins from being expressed in inappropriate temporal or spatial domains. LEUNIG (LUG) and SEUSS (SEU) normally act to prevent ectopic expression of the floral homeotic gene AGAMOUS in flowers. LUG encodes a protein with sequence similarities to the yeast Tup1 corepressor. SEU encodes a plant-specific regulatory p...

متن کامل

LEUNIG, a putative transcriptional corepressor that regulates AGAMOUS expression during flower development.

Regulation of homeotic gene expression is critical for proper developmental patterns in both animals and plants. LEUNIG is a key regulator of the Arabidopsis floral homeotic gene AGAMOUS. Mutations in LEUNIG cause ectopic AGAMOUS mRNA expression in the outer two whorls of a flower, leading to homeotic transformations of floral organ identity as well as loss of floral organs. We isolated the LEU...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Development

دوره 138 12  شماره 

صفحات  -

تاریخ انتشار 2011